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SUMMARY 

A distributed parameter model for computing unsteady flow conditions in liquid sys- 
tems is presented. The model is adapted for use in conjunction with a digital computer. 
The analytical method employed is essentially a solution synthesized from the effects of 
incremental step pressure pulses. The pressure pulses a r e  generated because of incre- 
mental flow-rate changes that originate in a fluid system from a variety of sources, in- 
cluding the mechanical motion of the system structure. The pressure pulses propagate 
throughout the system at sonic velocity and are partially transmitted and reflected at 
each discontinuity. 
the relation for the characteristic acoustic impedance. 
tories at any point in the system are obtained by a timewise summation of the contribu- 
tions of the incremental pressure pulses passing that point. 

The analysis is presented in a form general enough to be applied to  a variety of 
liquid-filled fluid systems. To illustrate the application of the method to a specific sys- 
tem, the response of a long, straight propellant line to a sinusoidal inlet flow and pres- 
sure  perturbation is computed. Both a constant-cross-section line and a tapered line 
are analyzed in the example. 

The velocity change caused by each pressure pulse is obtained from 
Pressure  and velocity time his- 

INTRO DU CTlON 

Fluid systems used in the aerospace industry often require high volume flow rates 
together with a small  permissible range of variation from the design flow and pressure 
operating points. Further, the trend is towards allowing increasingly short periods for 
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the startup and shutdown transients. As fluid systems become large in size, the dy- 
namic contributions of components ordinarily not considered in the dynamic analysis of 
small  systems become important. Representing liquid-filled lines, for example, by a 
single lump in a lumped-parameter analog-computer systems analysis is not adequate for 
fast transients or  high-frequency sinusoidal disturbances. The calculation of unsteady 
flow containing high-frequency disturbances requires a distributed parameter model. 

derived from continuity and momentum principles. Closed-form distributed parameter 
solutions for sinusoidal flow perturbations in long lines having negligible fluid damping 
are available and are in good agreement with experimental data (refs. 1 to 3). In gen- 
eral, however, the nonlinear partial differential equations obtained are difficult to solve 
without resorting to  tedious numerical or graphical techniques. 

An analytical study was therefore undertaken at the NASA Lewis Research Center to 
develop a numerical distributed-parameter solution for unsteady flow in liquid systems 
that would be in a form readily lending itself to digital-computer computation. The ap- 
proach used to obtain the numerical solution of the continuity and momentum equations 
is fundamentally similar to that used in the method of characteristics solution (ref. 4) 
but is simpler in form. The method will be referred to herein as the wave-plan solution. 

ments of the corresponding digital-computer program required to calculate unsteady flow 
in liquid systems. The analysis is presented in a form general enough to be applied to a 
variety of fluid systems. Examples a r e  given to  illustrate the application of the method 
to specific liquid systems. 

Equations representing pressure and flow disturbances in a liquid network can be 

This report presents the details of the wave-plan analysis along with the basic ele- 

ANALY S I S 

Genera I 

Basic equations. - The pressure and velocity of the liquid within a line as a function 

The momentum equation for a one-dimensional elastic fluid of constant mean density 
of position and time can be obtained from the equations of momentum and continuity. 

is (ref. 4) 

L J 

where f(v) is the resistance due to fluid viscosity, which is some function of velocity. 
(Symbols a r e  defined in appendix D.) 
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The continuity equation for an elastic liquid in an elastic line is (ref. 4) 

Equations (1) and (2) a r e  nonlinear partial differential equations which, when solved 
along with the boundary conditions in a liquid-filled line, give relations for velocity and 
pressure in the line. 

Method - - of solution. - The direct solution of the continuity and momentum equations 
to obtain velocities and pressures  is difficult even when the boundary conditions are rela- 
tively simple (open or closed ends). In addition, exact solutions have been found only for 
a system where the resistance te rm is linearized or neglected entirely (e. g. ,  refs. 1 
to  3). 

The continuity and momentum equations can be solved implicitly by employing a 
numerical process similar to a method of characteristics solution. This method, re- 
ferred to as a wave-plan solution, provides a straightforward, accurate distributed 
parameter solution for unsteady flow in a liquid system. 

A wave-plan solution is obtained as follows: At the point in a liquid system where a 
disturbance is introduced (such as an oscillating valve o r  a moving impedance change), 
an incremental change in liquid flow rate due to the disturbance over a very short inter- 
val of time is computed. The incremental pressure pulse accompanying the flow-rate 
change is then computed. This pressure pulse is propagated throughout the system at 
sonic speed. The pressure pulse is partially reflected and partially transmitted at all 
geometrical and physical discontinuities in the fluid network. Pressure  and velocity 
time histories a r e  computed for any point in the system by summing with time the con- 
tributions of incremental waves. 

Characteristic impedance. - The relation (characteristic impedance) between pres- 
sure  and velocity changes caused by a pulse traveling in the liquid-filled line is computed 
from momentum considerations. 
pressure wave propagates in a liquid-filled line, that exist at time t and at time t + At. 

Figure 1 shows pressure and flow conditions, as a 

V + AV f Ap v-+, T i r e  

P + A P  - 1  P I 
i 

&---AP 
L b- 
I I 

V t + A t  I V + A V  
I P + A P  
I 

The wave takes the time At to travel the dis- 
tance Ax from A to B. During this time there 
is a pressure P + A P  on the left end and a 
pressure P on the right end of the liquid con- 
tained between points A and B. This unbalanced 
pressure causes the fluid to  accelerate. 
Newton's second law gives 

I 
Point A 

Figure 1. - Effect of pressure pulse on mean line conditions. 
AV 
At 

( P +  A P - P ) A = p A A x -  
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Canceling and rearranging yield 

Ax A P = p A V -  
At 

The te rm Ax/At is the propagation speed of the pressure wave. The wave speed is 
equal to  the sonic velocity C in the system if the mean velocity of the liquid in the line 
is neglected. Since the mean velocity of the liquid is usually much smaller than the 
acoustic velocity, this is usually permissible. Thus, 

or in terms of head of liquid 

C 
g 

AH=-AV 

The sonic speed C for  a liquid flowing within a line is influenced by the elasticity of the 
line wall, and for a system that is axially unrestrained (refs.  4 to 6) can be calculated 
from 

Equation (3), which is the well known Joukowski equation, states that the pressure 
change at any point in a line is equal to the product of the velocity change at the point 
times the characteristic acoustic impedance pC of the liquid in the line. This relation 
may also be derived by employing continuity and energy principles (refs. 5 and 6). 

Generation of Pressure Waves 

Pressure  waves may originate in liquid flow systems in a variety of ways. Two 
commoi sources are an orifice or valve with a varying open area and a moving point in a 
line where there is an impedance change. In order to apply the wave-plan method to 
varying area change or moving impedance change, the corresponding disturbance func- 
tion is approximated by a ser ies  of discrete changes over small  equal time intervals. 
Figure 2 shows this approximation. 

time interval. The pressure perturbations associated with each of these changes 

4 
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a r e  then computed as shown in the following examples. 

erated at an orifice that experiences a change in open- 
ing area. The magnitude of the generated wave is a 
function of conditions before the a rea  change and the 
magnitude of the area change. 

Varying area orifice. - A pressure wave is gen- 
1 

L l  

L l  

-1 
I 

The flow through an orifice is assumed to obey the m Figure 2. - Step approximation Time, t of disturbing square-law relation: 

V = B G  function. 

The orifice coefficient B is a function of the open area, the line area, and the dis- 
For the case of an charge coefficient and is easily determined for a particular orifice. 

open area that is a small percentage of the line area (Ao << A), the orifice coefficient is 
given closely by 

where the discharge coefficient CD is a function of Reynolds Number (and hence, veloc- 
ity). For small velocity perturbations, however, the discharge coefficient varies only 
slightly, and hence the orifice coefficient may be considered to vary linearly with area 
changes. The examples in this report deal with this case. 

The flow is from left to right. The external pressure head may be varied in a pre- 
scribed manner. 

Figure 3 shows conditions at an orifice before and after a small  orifice-area change. 

The momentum equation across the wave front gives 

The flow out the orifice after the orifice a rea  change is given by 
-_ _ -  

vll = B2 I%+ AH1l - H22 

Solving the momentum and orifice equations simulta- 
neously gives the following quadratic in Vll 

B 1  

1 4 1  

"1. H1 I v11. H11 IH22 t + A t  

J- B 2  
Vll 2 + bVll + c = 0 

( 5) 
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Figure 3. - Effect of step change in ori f ice coeffi- 
cient at terminal orifice. where 



g 

The positive root of this equation gives the desired value for outflow velocity. Substi- 
tuting this value for Vll  back into the momentum equation gives the magnitude of the 
pressure wave generated by a sudden change in orifice coefficient from B1 to B2. 

Moving terminal orifice. - The analysis of the magnitude of a pressure wave gen- 
erated by the motion of a component in a fluid line is exemplified by considering the 
motion of a terminal orifice. The lateral velocity of the orifice is so represented by a 
ser ies  of step changes that the velocity of the orifice remains constant over short time 
intervals. Figure 4 shows conditions at a terminal orifice just before and a short time 
after a step change in velocity. The orifice coefficient need not be constant. 

The momentum equation across the generated wave is 

The displacement shown in figure 4 takes place in the time increment At. The con- 
tinuity equation states that the net inflow across boundary AA equals the net flow out the 
orifice plus the storage that takes place during the time interval. Therefore 

VllA At = VE2A A t  + VOA At 

or 

A where VE2 is the lateral velocity of the ori- 
fice end during the time interval, and VO is 
the liquid velocity in the line (with respect to 

The flow out the orifice is given by 

Time 
VE1 

I *  
"1. H1 'H2 

le, - VEzAt the orifice). 

t + A t  

I 
A 

Figure 4. - Effect of lateral motion of terminal orifice. Solving the preceding equations simultaneously 
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1 for the resulting line velocity gives the following quadratic in VO: 

I 2 VO + b V O + c = O  

where 

and 

Effect of Viscous Resistance 

After the generation of a pressure wave at a perturbing point in a liquid system, the 
wave propagates with sonic velocity throughout the system. The viscous resistance of 
the liquid medium influences the propagation of this wave. 

The effect of viscous resistance on pressure pulse propagation can be neglected 
without appreciable effect for short, large-diameter lines where such losses are small; 
however, for longer lines or small-diameter lines carrying viscous liquid, the resistive 
losses are not negligible and should be included in an unsteady flow analysis. 

necessity of linearizing o r  neglecting the friction te rm entirely. For graphical analyses 
it has been necessary to consider the friction losses as lumped at one or more points in 
the pipeline i f  a manageable solution is to be obtained (ref. 7). 

To include the effects of viscous resistance in a wave-plan solution, the extent that 
fluid viscosity influences the propagation of a pressure pulse must be determined. 
There is presently no experimental or analytical information available which is in a 
form that can be used for the prediction of the effect of viscous resistance in unsteady 
line flow. Because of this limitation it is necessary to make a quasi-steady approxima- 
tion and to assume that viscous losses in a small  line length dx are given at any instant 
by the Darcy equation as 

The exact solution of the partial differential equations (1) and (2) is limited by the 

The form of equation (7) is identical to that of an internal square-law orifice i f  the 
orifice coefficient is given by 
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This equation implies that viscous losses over a small  length of line can be lumped 
at an internal square-law orifice with a properly chosen orifice coefficient. This repre- 
sentation is referred to as the "orifice analogy,tt and its use in graphical analysis has 
been suggested by Bergeron (ref. 7). 

Line losses can be distributed at many discrete points along a line by inserting a 
large number of correctly chosen square-law (friction) orifices. Impinging waves are 
then reflected and transmitted at these friction orifices in a manner similar to that of 
reflection and transmission through a small region of flowing viscous liquid. The equa- 
tions governing wave reflection and transmission at a friction orifice are developed in 
the next section. 

Reflection and Transmission of Pressure Waves at System Discontinuities 

It is necessary at each discontinuity to compute the magnitude of transmission and 
reflection of each pressure pulse in terms of initial conditions at a discontinuity, the 
nature of the discontinuity, and the magnitude of the impinging waves. These deriva- 
tions are all made by employing the three fundamental fluid flow relations (continuity, 
momentum, and energy). 

Figure 5 shows two waves impinging and reflecting simultaneously at a discontinuity 
in a liquid system. The notation used in this figure is employed in subsequent specific 
examples. Liquid moving from left to right has a positive magnitude of velocity. 

The momentum equations across the wave fronts yield 

F A H i  c, 
vl)  

1 AH1 = - (V' - 
g 

AH11 = g c 1  (Vt - Vll) 

c2  AH2 = 7 (V2 - V") 

Figure 5. - Nomenclature for conditions before and after wave 
action at discontinuity. 

c 2  AH22 = g (V22 - V") 

(See fig. 5 for definition of Vt and VI'.) Equations (8) and (9) combine to give 

AH1l = AH1 +- (VI  c 1  - V11) g 
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and equations (10) and (11) give 

AH22 = AH2 + - c2  (V2. - V2) 
g 

The new pressures are given by 

Terminal orifice. - A terminal orifice is considered to be bounded by a pressure 
~~ 

reservoir. The pressure in the reservoir may be changing in a prescribed manner. In 
addition, the orifice coefficient may also be changing in a prescribed manner. Figure 6 
shows conditions before and after reflection from an orifice bounded at the inlet by a 
pressure reservoir. 

14 
Time 

H l ;  -T t- 

B 1  

~ M Z Z  

' H22. v , j  t+ 

G 
I 

H11 

B 2  

Figure 6. - Pressure-pulse reflection at terminal 
orifice. 

If the discharge after wave action is in the posi- 
tive direction (from the reservoir to the line), the 
head-discharge relation for the orifice is given by 

Solving this equation simultaneously with the 
momentum equations (13) for the velocity gives the 
following quadratic in V22: 

( 16) V22 2 + bV22 + c = 0 

where 

and 

11 - H2 - 2 AH2 + 

Because the resulting direction of flow was taken as positive, the positive root of 
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equation (16) is the desired result. 

new pressure at the orifice is given by equation (15). 

the velocity head relation is given by 

The magnitude of the reflected pressure wave is obtained from equation (13). The 

If the direction of flow is into the reservoir after wave action (negative direction), 

V' 

4 

v22 = B2 d(H2 + AH2 + AH22) - HI1 

Simultaneous solution with the momentum equations gives a quadratic in V22: 

2 V22 + bV22 + c = 0 

H22. v22 V" t +  
I 

v11. H11 

+ 

where 

- H2 - 2 AH2 + 

The negative root of equation (17) is the desired result. 
It is necessary to determine the resulting direction of flow so that the correct equa- 

tion (eq. (16) o r  (17)) can be applied. Inspection of equation (16) discloses that the t e rm 
Hll - H2 - 2 AH2 + C2V2/g must be positive to yield the necessary positive root. If 
this t e rm is negative, the flow must be into the reservoir, equation (17) must be used, 
and the negative root must be computed. 

a friction orifice. Because of identical conduits on both sides of the orifice, the head- 
velocity relation for the orifice after wave action for flow from left to right is 

Friction orifice. - Figure 7 shows conditions before and after pulse-wave action at 

2 Time t- Noting that C = C2 = C and solving this equation 
simultaneously with the momentum equations ( 12) 
and (13) give 

2 V i 1  + b V l l +  c = 0 

where 
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2 AH1 - H2 - 2 AH2 + - """9 g 

The positive root of this quadratic equation gives the resulting velocity through the 
friction orifice. The t e rm HI + 2 AH1 - H2 - 2 AH2 + 2CVl/g must be positive to yield 
a positive root. If this t e rm is negative, the resulting flow is from right to left, and the 
head-velocity relation for the orifice is 

This equation combines with the momentum equations to give the following: 

where the coefficients b and c are of the same magnitude and of opposite sign from 
the corresponding coefficients in equation (18). 

tion. The magnitudes of the resulting pressure waves and the pressures after wave 
action are given by equations (12) to (15). 

Diameter ~. . ___ ~~ discontinuity. - The relation between net head and discharge for a diam- 
eter  change in a conduit is derived by utilizing energy relations. 
notation for this derivation. 

equation for flow through the constriction from left to right after wave action is 

The negative root of this equation gives the resulting velocity in the negative direc- 

Figure 8 shows the 

If A1 > A2, the diameter discontinuity is an abrupt constriction, and the energy 

C 1  V' 1 V11, H11 ' T ' C z  t t  

Figure 8. - Pressure-pulse reflection at diameter discontinuity. 

J 
I 

The area ratio is denoted as 

Then the continuity equation is 
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(21) v22 = Rvll 

If these relations are substituted into the energy equation and the t e rms  are com- 
bined, the following net head-velocity relation is obtained: 

3R2 - 2R - 1 
H 1 1 - H 2 2 = V L (  4g ) 

If A1 < A2, the diameter discontinuity is an abrupt expansion. The energy equation 
for flow through the expansion f rom left to right after wave action is 

This equation gives the following velocity-head relation for an expansion: 

H1l - H22 = V i l ( R 2 g  R) 

The case of a lossless diameter discontinuity is also important because step diam- 
eter changes can be employed to simulate a tapered line. In the continuously tapered 
line the losses are small and sometimes can be neglected. The energy equation without 
the loss t e rm is 

n 

The resulting velocity-head relation is 

H 1 1 -  H22 = Vll(+) 2 R  

The final net head after wave action can be written as 

H i 1  - H22 = Hi  + AH1 + AH11 - H2 - AH2 - AH22 

or 
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C, C ,  

The relation is combined with the continuity equation and the velocity-head relation 
to obtain second-order polynomials for the line velocity after wave action. The equation 
is 

aVll + bVll + c = 0 

where 

C l V l  c2v2 c = - ( H 1 + 2 A H l + -  g +-- g 

The coefficient a depends on the type of discontinuity and whether energy losses 

- a r e  included. For a contraction with losses included the coeffici'ent is 

3R2 - 2R - 1 a =  
4g 

For an expansion with losses included the coefficient is 

R2 - R a = -- 

For either type of discontinuity with no losses included the coefficient is 

R2 - 1 a=- 
2g 

For each case the resulting velocity is the positive root of equation (26). There- 
fore, the t e rm 

H1 + 2 AH1 + ~ C l V l  +-- c 2 v 2  H2 - 2 AH2 
g g 

13 



must be positive. If this t e r m  is negative, the resulting flow is from right to left, and 
the equations are reformulated by putting the loss t e rm on the correct side of the energy 
equation. 

Junctions of three or more legs. - The previously presented mathematical analyses 
pertaining to  the reflection of a pressure pulse at a diameter discontinuity have taken 
into account energy losses introduced by the discontinuity. With junctions of three or 
more legs, the inclusion of energy loss t e r m s  becomes increasingly difficult because of 
the irreversibility of frictional effects. Thus, the treatment employed herein will be 
similar to the one presented in standard references on fluid dynamics and will not be 
derived (e. g., ref. 8). 

The relations for computing the percentages of magnitude of a pressure wave trans- 
mitted and reflected at a junction are based on the following: 

(1) The Joukowski equation applied across  each wave 
(2) Continuity of Plow at the junction 
(3) Continuity of pressure at the junction 
The magnitude of the wave that is transmitted to all the other legs of a junction of 

n legs due to a wave of magnitude AH impinging in line i is given by T(i)AH, where 
the transmission coefficient T(i) is given by 

2A(i) 

The magnitude of the wave reflected in leg i is given by R(i)AH when the reflec- 
tion coefficient R(i) is given by 

R(i) = T(i) - 1 

Analysis of t he  Dynamics of a L iqu id System by Wave Plan 

The wave-plan analysis supposes a system composed of a discrete number of dis- 
continuities connected by lossless line segments, which serve only to transmit pressure 
pulses. The discontinuities include geometric ones, such as terminal orifices and diam- 
eter discontinuities, and artificial ones, such as friction orifices. A typical simulated 
fluid system is shown in figure 9. 
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(-y- I 
Left Right 

Point A C B 

Figure 9. - Wave-plan representation of typical fluid system. 

There is a variable-area orifice at A (valve) and a fixed orifice at B. At C there is 
an abrupt change in line diameter. Friction orifices a r e  inserted between A and C and 
between C and B to simulate viscous resistance. 

in a system at a particular instant of time. Through the use of these equations it is 
possible to compute velocity, pressures,  and magnitudes of pressure pulses leaving a 
particular discontinuity in  t e rms  of the magnitudes of impinging waves and conditions 
prior to wave action. 

To analyze a system, however, the equations must be both time and position de- 
pendent. This dependency is indicated by the form of the basic partial differential equa- 
tions (eqs. (1) and (2)). It is apparent that the pressure wave impinging at one discon- 
tinuity in  a liquid system is exactly that wave which left an adjacent discontinuity at some 
time in  the past (because of the lossless line connector simulation). Thus, the waves 
a r e  related by position and time. In general, variables have the form f(x, t). Specifi- 
cally, H(x, t), V(x, t), and AH(x, t) denote the pressure head, velocity, and pressure 
pulse as a function of position and time, with x and t being the position and time sub- 
scripts, respectively. 

(discontinuities) and at discrete time intervals. New information is available only at 
discrete time intervals because all of the disturbing functions are approximated by a 
series of small  step changes occurring at specified times. The system response to 
these disturbing functions will also be in the form of step changes. Because of the two- 
parameter dependence of the dependent variables, it is advantageous to denote position 
and time subscripts. 

oped for a discrete point to a liquid system, it Is necessary to  introduce a method of 
denoting position. 
manner as indicated in figure 9. (This arrangement is modified at junctions of three or 
more legs). The position subscript is denoted as L. 

In addition, because pressure and velocity states may differ across  discontinuities, 
it is necessary to denote a left and a right side of a ciiscontinuity. This is done by adding 
an L for left and an R for right to  the nonsubscripted part  of the variable. 

The equations developed thus far have applied only to conditions at a particular point 

The wave-plan analysis provides for information at specified points in the system 

Position subscripts. - In order to apply the analysis equations that have been devel- 

This is done by numbering adjacent discontinuities in a consecutive 

Thus HL(L, t) denotes the pressure head to  the left of discontinuity L at time t. 
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Time subscripts. - The time subscript J is defined as 

t =  J A t  

where t is the time and At is the working time increment. 

follows : 

Thus HR(L,J) denotes the 
pressure head to the right of discontinuity L at time t = J At. 

Selection of working time increment. - The working time increment At is the time 
interval between successive computations. 

Its selection is determined by two factors. First, the time increment must be 
small enough to approximate accurately all disturbing functions by a ser ies  of step 
changes. Second, it is necessary that all reflections of pressure pulses in the system 
take place at an integer number of time intervals. The wave travel times between all 
adjacent discontinuities will then be an integer number of working time increments. If 
this were not the case, waves would be impinging on a discontinuity in a completely 
arbitrary fashion and would make the solution unmanageable. 

The selection of the time increment is simplified because the majority of discon- 
tinuities in a system will be friction orifices, and these can be placed where desired. 
For example, the selection of the working time interval for the system shown in figure 9 
is made as follows: 

( 1) The wave travel times between adjacent geometric discontinuities are determined: 
(a) tac - wave travel time between A and C 
(b) tcb - wave travel time between C and B 

Within the desired limits, the largest time interval of which these travel times are 
integer multiples is determined. This time interval represents the largest working time 
increment possible. 

(2) It is then determined if the integer number of working time increments necessary 
for travel between A and C and between C and B is large enough to insert the desired 
number of friction orifices that must, of course, be separated in time by at least one 
working time increment. If not, the increment can be divided by any integer to obtain a 
smaller working time increment. 

(3) It must be determined if  the working time interval necessary to assure an integer 
number of time intervals between all discontinuities is small  enough to approximate 
accurately the disturbing function (variable-area orifice at A) by a ser ies  of step changes. 
If not, the working time increment is further divided by an integer necessary to get a 
suitable approximation. The integer number of time increments between discontinuities 
is increased by this factor. 

Subscripted notation for analysis -~ equations. _ _  - The analysis equations are easily ex- 
tended for application to a liquid system by the use of the subscripted notation. Fig- 
ure 10 shows conditions at a discontinuity before and after wave action when the sub- 
scripted notation is employed. 

16 



V' 

Left 

V' 

r L A H R ( L  - 1, J - KX) 

HL(L, J - 1) 

4 
L 

l A H L ( L  + 1, J - KY) 

Right r AHR(L, J) 

4 

Figure 10. - Subscripted nomenclature for conditions before and after wave action at 
discontinuity. 

The time that the waves reach discontinuity L is t = J At. Conditions before and 
after that time a re  constant, and step changes occur at t = J At. 

A comparison of the nonsubscripted notation in figure 5 to the subscripted notation 
in figure 10 gives the identities necessary to make the analysis equations general expres- 
sions for a liquid system. These identities are as follows: 

VL(L, J - 1) = V1 = velocity to left of discontinuity L 
HL(L, J - 1) = H1 = pressure head to left of discontinuity L 
VR(L, J - 1) = V2 = velocity to right of discontinuity L 
HR(L, J - 1) = H2 = pressure head to right of discontinuity L 
AHR(L - 1, J - KX) = AH1 = pressure pulse coming from adjacent discontinuity to 

left. KX is the number of working time intervals it takes a sonic disturbance 
to travel between the two discontinuities. 

right. KY is the number of working time intervals it takes a sonic disturbance 
to travel between these two discontinuities. 

VL(L,J) = Vll  = velocity to left of discontinuity L 
HL(L, J) = Hll = pressure head to  left of discontinuity L 
VR(L, J) = V22 = velocity to right of discontinuity L 
HR(L, J) = H22 = pressure head to right of discontinuity L 
AHL(L, J) = AHl1 = pressure pulse leaving discontinuity L and moving to left 
AHR(L, J) = AH22 = pressure pulse leaving discontinuity L and moving to right 

Substitution of these identities into the analysis equations (eqs. (8) to (29)) yields a 

Method of computation. - The solution is carried out by using the subscripted equa- 

(1) A working time increment is selected. 
(2) Initial conditions are computed from given steady-state values that exist in the 

AHL(L + 1, J - KY) = AH2 = pressure pulse coming from adjacent discontinuity to 

The conditions after wave action are as follows: 

perfectly general set of algebraic equations applicable to any liquid system. 

tions as follows: 
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system prior to  the initiation of a disturbance. These conditions include velocity and 
pressure to  the left and right of each discontinuity and are denoted at t = 0 by VL(L,O), 
VR(L, 0), HL(L, 0), and HR(L, 0). 

(3) Computations are then carried out to determine conditions at each discontinuity 
at the end of the f i rs t  working time interval by using the conditions from step (2) as ini- 
tial conditions. It should be noted that the analysis equations will predict no change at an 
undisturbed discontinuity that is not subjected to impinging waves. Thus, conditions will 
only change at the end of the first time interval at a disturbance source (point A, fig. 9). 
At the disturbance source conditions change, and waves are generated that will subse- 
quently alter conditions at adjacent discontinuities. 

carr ied out as long as desired to  give pressures  and velocities at each discontinuity at 
the end of each working time interval. 

(4) Each discontinuity is analyzed at the end of each interval. The computations are 

Digital Computer P rog raming 

The wave-plan analysis consists of the sequential solution of many equations. The 
dynamic analysis of even a rather simple liquid system for a reasonable number of t ime 
intervals involves a large number of computations. A digital computer must be employed 
if the solution is to be obtained in a reasonable length of time. 

To make the digital analysis as general as possible, computer segment programs 
(subroutines) have been written for the most common types of discontinuities. These 
discontinuity solutions can then be combined (incorporating junction equations, if neces- 
sary) to obtain digital computer models for various liquid flow systems. 

Each discontinuity subroutine computes conditions at the discontinuity for some 
point in time as a function of the local velocity and pressure-head conditions a time in- 
terval earlier,  the magnitude of impinging waves (from adjacent discontinuities), and the 
step changes in  disturbing functions during the time interval. 

sentation: 
The following subroutines have been written to be used in the digital model repre- 

(1) Terminal orifice subroutine 
(2) Internal (friction) orifice subroutine 
(3) Diameter discontinuity subroutine 

Each subroutine uses the general relations given by equations (12) to  (15). Also 
each subroutine initially assigns nonsubscripted identities to  their subscripted counter- 
parts and finally assigns the nonsubscripted results to the subscripted te rms  (as indi- 
cated in the section entitled Subscripted notation for  analysis equations). A description 
and computer printouts of the digital computer subroutines are included in appendix A. 
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The subroutines are combined to form digital computer models for the dynamic 
analysis of liquid flow systems. Two examples are included in the next section. 

RESULTS AND DISCUSSION 

The equations and programs developed in the ANALYSIS section form a basis for the 
analysis of unsteady flow conditions in a liquid flow network. The equations and pro- 
grams have been kept general so that they may be applied to the analysis of a variety of 
liquid systems. In general, the wave-plan digital-computer analysis has distinct advan- 
tages over other methods such as analog-computer models that substantially linearize or 
lump parameters and small  perturbation techniques that linearize around mean-line con- 
ditions. The following features of the wave-plan analysis should be noted: 

(1) Viscous friction effects are easily included. 
(2) Perturbing functions of any form may be used. 
(3) Nonlinear relations are easily included. (Linearization of parameters is of little 

(4) Both transient and steady-state responses to disturbing functions a re  given. 
(5) Complex networks can be analyzed. 

Two examples will be used to illustrate the application of the wave-plan method to 

or no advantage. ) 

the construction of digital models of particular liquid flow systems. 
will illustrate the method of computing the transient and steady-state response of a long, 
straight hydraulic line to a periodic sinusoidal flow disturbance. In the second example 
the response of a long tapered line will be computed. 

The first example 

Example 1: Long Hydraul ic L ine Wi th Osci l lat ing In le t  Or i f ice 

This example was chosen because the computer results can be compared directly 
with experimental data from the Lewis line dynamics r ig  (refs. 1 to 3). Schematics of 
the liquid flow system a r e  given in figure 11. Figures ll(a) and (b) show the analytical 
model and the experimental rig, respectively. The system consists of a 68-foot-long, 
7/8-inch-inside-diameter line with pressure reservoirs  at both ends. The test fluid was 
J F - 4  fuel or  another hydrocarbon, depending on the liquid viscosity desired. Line pres- 
sures  ranged from 200 to 400 pounds per square inch. A variable-area throttle valve 
that perturbs the system is located at the upstream end of the line (point A), and a fixed 
orifice is located at the downstream end (point B). The details of constructing the digi- 
tal model a r e  given in appendix B along with the program constants used in the calcula- 
tions. 
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(b) Schematic of experimental rig. 

Figure 11. - Hydraulic line with oscillating inlet orifice. 

Effect of amplitude of -~ input perturbations. - Most line-dynamics analyses a r e  based 
on small-perturbation techniques that permit the use of linearized terminal impedances 
as an approximation for nonlinear pressure-flow relations at the end of the line. There- 
fore, in taking experimental line-dynamics data (refs. 1 to 3) the practice is to limit the 
amplitude of the oscillating throttle disturbance generator. The minimum usable ampli- 
tude, however, for a given line condition and terminal impedance is limited in practice 
by the ratio of the sine wave signal to the nonharmonic noise which decreases with de- 
creasing amplitude. The permissible maximum amplitude is limited in practice by the 
appearance of harmonics in the sinusoidal pressure signal as the amplitude is increased. 
The system must be operated between these two limits. 

The relation between the disturbance amplitude and the degree of nonlinearity of the 
pressure and velocity perturbations was determined analytically by varying the amplitude 
of the sinusoidal input perturbations for  the analytical line model. The mean orifice 
coefficients were 0.8 at the inlet and 1.0 at the outlet. The steady line velocity was 
14 feet per second. For the digital computer program (appendix B) the amplitude of the 
input orifice coefficient perturbation BA was varied at 40 cps as shown in table I. 
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TABLE I. - AMPLITUDES O F  ORIFICE 

COEFFICIENT PERTURBATIONS 

Input orifice 
coefficient 

perturbation 
amplitude, 

BA 

0.48 
.32 
.20 
.15 

Percent of steady- 
state orifice 
coefficient 

60 
40 
25 
18.75 

The calculated steady-state responses for the 
pressure and fluid velocity at the inlet and outlet of 
the line (points A and B, fig. ll(a)) a r e  shown in 
figure 12 (p. 22). The velocities and pressures  are 
dimensionless, having been divided by steady line 
values. Figure 12 shows that, as the amplitude of 
the disturbing function is decreased, the system 
responses a r e  more nearly described by a 
sinusoidal-type periodic function; however, for the 
particular line condition and terminal impedance 
used in the example, nonlinearities a r e  evident 
even for relatively small  perturbations. For ex- 

ample, the inlet velocity perturbation is very clearly nonsinusoidal for an 18.75-percent 
disturbing amplitude even though the perturbation amplitude is only 2 percent in the posi- 
tive direction and 4 percent in the negative direction. 

Transient ~ -~ response. - Dynamic systems analyses a r e  usually based on steady-state 
responses to steady sinusoidal inputs. This analysis technique does not, however, pre- 
dict the transient response to the initiation of a disturbance or a change in the disturb- 
ance characteristics in a liquid flow system. The wave-plan solution gives both trans- 
ient and steady-state solutions. This point is clarified by examining both the transient 
and final steady-state responses to  the initiation of a sinusoidal disturbing function in a 
liquid system under steady mean-flow conditions. A value for BA of 0. 15 (case 4, table I) 
was chosen for the amplitude of the disturbance function. The line response starting with 
the initiation d the disturbing function is given in figure 13 (pp. 23 and 24). Fo r  the case 
studied several cycles were required for the perturbation velocities and pressures  to  ap- 
proach the steady-state values. In some cases the amplitudes of the transient responses 
a r e  considerably different from the steady responses. For  example, during the early 
part of the transient period the magnitude of the inlet velocity perturbation was nearly 
double the steady-state value. 

Comparison of analytical and experimental results. - The experimental hydraulic 
line (fig. l l(b)) was operated with the upstream throttle valve sinusoidally perturbed at 
70 cps with area perturbation amplitudes of 12.3, 33.8, 55.3, and 76.8 percent of the 
open area. 
corresponding value for the downstream orifice was 0.42. The downstream orifice was 
slightly open with respect to characteristic. 
perimental pressure-time oscilloscope t races  for the quarter-length point of the line 
(measured from the upstream throttle valve). 

The experimental conditions were duplicated by the digital model, and figure 15 
(p. 25) shows the theoretical results for these four different input amplitudes. The 

The mean value of the coefficient for the upstream orifice was 0.65, and the 

Figure 14 (p. 25) shows the resulting ex- 
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Figure 12. - Effect of amplitude of inlet orifice area perturbation on steady-state response of long line. 

agreement between the wave shapes determined analytically and experimentally is very 
good for all cases. In addition the analytical and experimental magnitudes agree to 
within the accuracy of the measurements (approx. 3 percent). 

This example illustrates that the wave-plan analysis for unsteady liquid flow is 
capable of accurately including nonlinear effects and giving results in good agreement 
with experimentally observed values. 
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Figure 13. -Trans ient  response of long l ine  to init iat ion of sinusoidal in le t  valve area perturbation. 

Example 2: Response of Long Tapered Line to Sinusoidal Input  Disturbance 

The analysis of the response of a liquid system composed of lines of nonuniform 
diameter (tapered) to a periodic disturbing function is difficult if classical methods are 
employed; however, tapered lines can easily be included in a wave-plan analysis by 
approximating the tapered line by a line composed of a discrete number of diameter 
changes (fig. 16, p. 26). 

figure 17 (p. 26) was studied in detail. This system consists of two pressure reservoirs 
connected by a tapered line. At the end of the tapered lines, relatively large resistive 
losses were introduced in the form of square-law orifices. The throttle valve at point A 
has a sinusoidally varying area, and the orifice at point B is fixed. 

In order to evaluate the quantitative effect of tapered lines, the system shown in 
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(a) Orif ice area perturbationampli- 
tude, 12.3 percent of open area; 
maximum amplitude (peak to peak) 
of pressure perturbation, 11.2 & 
0.7 pounds per square inch. 

// 

(c)  Orif ice area perturbation ampli- 
tude, 55.3 percent of open area; 
maximum amplitude (peak to peak) 
of pressure perturbation, 7 3 . 5 ~  
3.5 pounds per square inch. 

- 1  

(b)  Orif ice area perturbation ampli- 
tude, 33.8 percent of open area; 
maximum amplitude (peak to peak) 
of pressure perturbation, 32.2 rt 
0.7 pounds per square inch. 

11.3 lblsq in. 

(d) Orif ice area perturbation am- 
plitude, 76.8 percent of open 
area; maximum amplitude (peak 
to peak) of pressure perturbation, 
1 4 7 k 3 . 5  pounds per square inch. 

Figure 14. - Experimental pressure-time oscilloscope traces for quarter-length point of line. 

(a) Orif ice area perturbation amplitude, 12.3 percent of open 
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Time 

(c) Orif ice area perturbation amplitude, 55.3 percent of open 
area. 

(b) Orif ice area perturbation amplitude, 33.8 percent of open (d) Orifice area perturbation amplitude, 76.8 percent of open 
area. area. 

Figure 15. - Analytical pressure-time traces for quarter-length point of line. 
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Figure 16. - Step-diameter-change approximation to tapered line. 
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Figure 17. - Reservoir conduit system with tapered line. 

This system was studied for various 
degrees of taper. The configurations 
were chosen to give the diameter at the 
inlet as 

and the diameter at the outlet as 

The diameter of the tapered conduit 
is assumed to vary linearly between the 
ends, and the average diameter is always 
D feet. 
- 

If the resistances of the terminal orifices are large compared to  the line loss, the 
steady discharge of the system is practically independent of 6 and would depend mainly 
on the reservoir pressures  and the mean line diameter. Even for lines with much 
smaller end-resistive losses the system discharge would be only slightly dependent on 
the degree of taper, because line losses consisting of friction and expansion o r  contrac- 
tion losses would be mainly 
cally this can be written as 

dependent on line length and average diameter. Mathemati- 

2 H E N -  HEX Q =  
Ken + K1 + Kex 

where Ken, K1, and Kex are the loss coefficients of the entrance orifice, the line, and 
the exit orifice, respectively. 

it is possible to compare directly the dynamic response of systems that are essentially 
statically equivalent. Pressure  and flow perturbations can be quantitively compared as 
a function of degree of taper. The straight conduit (6  = 0) is a special case that is in- 
cluded in the analyses. 

ratio of diameter to wall thickness remained constant along the length of the line. 

sections of conduit, as shown in figure 17. 
mating section I is computed by the equation 

When this system is used with large values of Ken and Kex as compared to K1, 

The tapered conduit was chosen so that the wave velocity would be constant; thus the 

For the digital model the tapered line was approximated by N - 1 short straight 
In this manner the diameter of each approxi- 
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Figure 18. - Pressure and velocity perturbation responses in tapered line. 
Inlet diameter, 0.6 foot; exit diameter, 1.4 feet; frequency, 17.5 cps. 

N -  1 (33) 

The details of the digital model along with the computer program and program con- 
stants are given in appendix C. One basic system was studied in detail, a system having 
a high-resistance orifice (three-fourths to seven-eighths closed geometrically but 
slightly open with respect to characteristic impedance) at the inlet with a 10-percent 
sinusoidal variation in the area of the orifice opening. 
even higher resistance than the inlet and represents an end that is closed with respect to 
characteristic impedance. Nine degrees of taper were studied, the average diameter 5 
being 1 foot for each case. The values of 6 that were used were -0 .3 ,  -0.2, -0. 1, 0, 
0.1, 0.2, 0 .3 ,  0.4, and0.5foot.  

The quarter-wave resonance frequency for the nontapered line is 15 cps. Frequen- 
cies of 5, 7.5, 10, 12.5, 15, 17. 5, 20, and 25 cps were studied for each case. In all 
cases the pressure and flow perturbations were slightly nonlinear even though they were 
small. In all cases they were within 2 percent of mean-line values. Figure 18 shows 
typical pressure and flow perturbations for one cycle. 

The outlet orifice was chosen of 
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Figure 19. - Frequency dependence of tapered-line dynamic response. 

. o  

In spite of the nonlinearity of the perturbations, they were steady and repeatable 
after several  cycles (during which the transient died out) and resembled sinusoids. It 
was considered appropriate to  make comparisons based on positive amplitudes. This 
procedure is followed in the ensuing discussion. 

The analytical results are displayed graphically in  figure 19. Figure 19(a) shows 
the variation of the amplitude of the outlet pressure perturbation with frequency for the 
expanding taper (line that expands from inlet to outlet). Figure 19(b) shows the pressure 
perturbation gain (ratio of outlet pressure perturbation amplitude to inlet pressure per- 
turbation amplitude) for the expanding taper. 
sults for contracting tapers. The most striking result apparent in figure 19 is the shift 
in the resonant frequency for  tapered lines. This shift is shown in figure 20. 

Another result is that the maximum pressure perturbations at the outlet have a 
strong dependence on 6 and vary considerably over the entire frequency range. Thus a 
certain amount of control can be exerted over the response of this system by the judi- 
cious choice of tapers. For example, in the case of an expanding taper of 6 = 0.3 the 
amplitude of the outlet pressure perturbation is significantly reduced when compared to 
a straight-line response for the frequencies shown except in the range from 6 to 12 cps. 
A line with a contracting taper of 6 = -0.3 differs little from a nontapered line (6  = 0) 
up to  15 cps. For frequencies greater than 15 cps the outlet pressure amplitude pertur- 

Figures 19(c) and (d) show the same re- 
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Figure 20. -Variation of resonant frequency with taper factor. 

bation is considerably greater. 
This example indicates that the 

dynamic response of a liquid system 
can be altered significantly with a cer -  
tain amount of control without signifi- 
cantly altering the static response of 
the system; however, the primary 
intent of the example is to illustrate 
the use of the wave-plan analysis. 
Although the example was applied to 
a system with a linear taper and a 
sinusoidal disturbing function, a sys- 
tem of any arbitrary taper with any 
disturbing function could have been 
analyzed with no additional difficulty. 

CONCLUDING REMARKS 

The analytical method presented in this report provides a means of obtaining dis- 
tributed parameter solutions to  a variety of unsteady internal flow problems for liquids 
flowing in conduits. An advantage of the method is that the complete solution is obtained. 
For example, both the transient and the steady-state response to  a suddenly imposed 
periodic flow disturbance is obtained. 
arbitrary form and need not be periodic. Nonlinear effects a r e  easily included. In addi- 
tion, the wave-plan method is advantageous in making certain types of dynamic response 
calculations. 
cross-sectional a rea  distributions for which there would be little hope of obtaining 
closed-form analytical solutions can be easily handled. 

between the structural  motion of the conduits and the perturbations in the fluid flowing 
within the conduits. An example of such a problem is the calculation of propellant flow 
in the feed system of a rocket booster experiencing longitudinal oscillations. 

Furthermore, the disturbing function can be of 

For example, the response of liquid-filled lines having types of axial 

The wave-plan analysis can readily solve problems in which there is interaction 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 4, 1965. 
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APPENDIX A 

COMPUTER S U B ROUT1 NE S 

Digital-computer routines have been written to solve for  conditions at various line 
discontinuities after wave action in te rms  of the conditions at the discontinuity prior to  
wave action, the magnitudes of impinging waves, and the physical characteristics of the 
discontinuity. These routines have been formulated in such a manner that they may be 
easily incorporated into a computer program to synthesize different liquid flow systems. 

In all cases  the computer routines have been written in nonsubscripted notation, 
which corresponds exactly to the notation presented in the text of this report. In the 
calling vector that calls  the subroutine into the main program, the subscripted counter- 
par ts  of the nonsubscripted subroutine variables are identified. 

possible to use the analyses presented in the text (for a contraction o r  expansion with a 
left-end terminal orifice and flow to the right) to  solve for conditions at a diameter dis- 
continuity with a right-end terminal orifice and flow to  the left. In this manner the anal- 
yses presented in the text of this report have been generalized. Proper identification of 
the variables in the calling vector is tantamount to orienting the discontinuity to corre-  
spond to the case analyzed in the text. A table incorporated into each subroutine gives 
the proper subscripted-to-nonsubscripted dependence for each case. 

in a velocity term. For several  reasons these equations were solved by an iterative 
manner by employing Newtonian extrapolation. The roots of the polynomials were deter- 
mined by looping the following equations: 

This mechanism of identifying subscripted variables in a calling vector makes it 

Each of the analyses presented in the text resulted in a polynomial that is quadratic 

aV112 + bVl l  + c 
2aVl l  + b 

e r r o r  = 

V11 = V11 - e r r o r  

The looping is continued until the e r r o r  is of sufficiently small  magnitude. An ac- 
ceptable solution can be obtained within a very few cycles because the wave-plan solution 
deals with small  changes, and the value of the velocity before wave action is a good 
approximation of the final value. In addition, the coefficients b and c a r e  generally 
large and always much larger than a. These conditions lead to a rapidly diminishing 
e r r o r  term. 

A direct solution of the quadratic equations by the quadratic formula results in a 
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solution that is a small difference between two large numbers. In some cases sufficient 
accuracy cannot be obtained even when double-precision computing techniques are em- 
ployed. A brief description of the program and the Fortran IV program for each com- 
puter routine follows. 

Term i na I 0 r i f  ice S u brou t i ne 

Equations (16) and (17) are the basic equations employed in this analysis. They are 
derived in the text for an orifice on the left end of a line. The table at the beginning of 
the subroutine gives the identities that must be substituted into the calling vector depend- 
ing on whether the orifice is on the right or  left end of the line. Before the subroutine 
is entered, the following terms must be identified with a numerical value: 

B orifice coefficient 
HEN 
HEX 
J time counter 
K 
L position counter 

reservoir head for left end 
reservoir head for right end 

number of time increments to nearest discontinuity 

The computer program for a terminal orifice is as follows: 

SUBROUTINE T O R ( H 2 , D H 2 , V 2 , H l l , H 2 2 , D H 2 2 , V 2 2 , V Z 2 )  

COMMON/BOX/A,B,C, G ~ B F T E R R O R  
C SUBROUTINE TERMINAL ORFICE 

C LEFT END RIGHT END 
C H2 H R ( L , J - 1 )  H L (  L 9 J-1 1 
C v 2  V (  LIJ-1 -V ( L 9 J-1 ) 
C DH2 DHL (L+1, J-K 1 DHR(L-1 ,J -K )  
C v 2  2 V ( L , J )  - V ( L , J )  
C H2 2 H R ( L 9 J )  H L ( L 9 J )  
C DH22 DHR ( L  ,J 1 DHL ( L 9 J ) 
C H 1 1  HEN HEX 

BB = C*B*B/G 
CC=-B~B+(H11-H2-2.~DHZ+C~VZ/G) 
I F ( C C )  1 0 , 1 O , 4  

4 BB = -BB 
cc = -cc 

10 v 2 2 =  v2 
11 ER = ( V 2 2 * V 2 2 + B B * V 2 2 + C C ) / ( 2 . 9 v 2 2 + 8 8 )  

V 2 2 =  V22-ER 
I F  (ABS(ER)-ERROR ) 1 2 9 1 2 9 1 1  

1 2  DH22=DH2+C/G*(V22-V2)  
H22 =H2+DH2+DH2 2 
RETURN 
END 
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Friction Orifice Subroutine 

The basic equations for this routine are equations (18) and (19). Before this routine 

B F  friction orifice coefficient 
J time counter 
K 
L position counter 

is entered, the following t e rms  must have a numerical value: 

number of t ime increments to nearest discontinuity 

The computer routine is the following: 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE F O R ( H 1 ~ D H 1 , D H 2 ~ H 2 ~ V 1 ~ H l l ~ D H 2 2 r D H l l , H 2 2 r V l l ~  
SUBROUTINE F R I C T I O N  ORFICE 

H 1  
DH 1 
DH 2 
H2 HR ( L  9 J - 1 )  

v 1  
H 1 1  H L ( L 9 J )  
D H l l  
DH22 
H2 2 H R ( L 9 J )  

HL ( L 9 J-1 ) 
DHR (L-1, J-K 1 
DHL ( L+19 J-K 1 

V ( L 9 J-1) 

DHL ( L  9 J 1 
DHR ( L  9 J 1 

C v11 V ( L 9 J )  
COMMON/BOX3/ A9 B, C,G,BF,ERROR 
BB = 2."BF*BF*C/G 
CC=-~H1+2.*DH1+2.*C/G*~l-(H2+2o*DH2))*BF*BF 
I F ( C C )  39392 

2 BB = -BB 
cc = -cc 

3 v11 = v 1  
4 ER = (V11*V11+BB*V11+CC)/(BB+2o*Vll) 

V 1 1  = V11-ER 
I F  (ABS(ER)-ERROR ) 5 9 5 9 4  

5 D H l l  = D H l + C / G * ( V l - V l l )  
H 1 1  = H l+DHl+DH11  
DH22 = D H Z + C / G * ( V l l - V l )  
H 2 2  = H2+DH2+DH22 
RETURN 
END 

Diameter D i scon t i n u it y S u brou t i n e 

Equations (20) to (29) are employed in the diameter discontinuity subroutine. These 
equations a r e  derived for flow in the positive direction (to the right) for both an expan- 
sion and a contraction. Before the subroutine is entered, the direction of flow after 
wave action is determined, and this direction in turn determines which subscripted var- 
iables are inserted into the calling vector. 

the discontinuity. To utilize this case, it is necessary to assign the te rm LOSS a value 
of zero. Additional te rms  that must be defined are the following: 

The subroutine also includes the case where no viscous loss is considered across  
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J time counter 
K 
L position counter 

number of time increments to nearest discontinuity 

The computer routine is as follows: 

SUBROUTINE D I S C ( H 1 , V 1 ~ D H 1 , H 2 r V 2 , D H 2 r C 1 , C 2 , A 1 , A 2 , H l l ~ D H l l ~ H 2 ~ ~ D H 2 ~ ~  
l V l l 9 V 2 2 )  

C D I S C O N T I N U I T Y  SUBROUTINE 

COMMON/BOX2/ LOSS 
COMMON/BOX/A,B,C, G V B F ~ E R R O R  

C FLOW TO R I G H T  FLOW T O  L E F T  
C CCC GREATER THAN 0 CCC L E S S  THAN 0 
C H 1  H L ( A 9 J - 1 )  HR ( L  9 J - l )  

C v 1  V L ( L 9 J - 1 )  -VR(  L 9 J - 1 )  

C DH 1 D H R ( L - 1 , J - K )  DHL 1 L+19 J - K )  
C H 2  H R ( L , J - 1 )  H L  ( L  9 J-1) 
C v 2  V R ( L 9 J - 1 )  V L  ( L  9 J-1) 
C DH2 DHL ( L+1, J - K )  D H R ( L - 1 , J - K )  
C H 1 1  H L  ( L  9 J 1 HR ( L ,J 
C v11 V L  ( L  9 J 1 -VR ( L 9 J 1 
C D H 1 1  DHL ( L  9 J)  DHR(  L 9 J )  

C H22 H R ( L 9 J )  H L ( L + J )  
C v 2  2 V R ( L 9 J )  - V L (  L r J  1 
C DH2 2 D H R ( L 9 J )  DHL ( L r J  1 
C c 1  C L ( L )  C R ( L )  

C A 1  A L ( L )  A R ( L )  
C c 2  C R ( L )  C L ( L )  

C A 2  A R ( L )  A L ( L )  
R = A l / A 2  
CC= - (H1+2 . *DH1+C1*V1 /G-H2-ZD*DH2+C2*V2 /C~  
B B  = C l / C + C Z * R / G  
I F  ( L O S S )  4 9 3 9 4  

3 AA = ( R * R - l . ) / ( 2 . * G )  
GO T O  10 

4 I F ( R - 1 . )  1 , 1 9 2  
1 AA = ( R * R - R ) / G  

GO T O  10 
2 AA = (3 . *R+R-Z.*R- l . ) / (4 . *G)  

5 ER = (AA*V1I*V11+BB*V11+CC)/(2~*AA*Vll+BB) 
10 v11= v 1  

V l l = V l l - E R  
I F  ( A B S ( E R ) - E R R O R )  69695  

6 D H l l  = D H l + C l / C * ( V l - V l l )  
V 2 2 = R * V l l  
D H 2 2 = D H 2 + C 2 / G * ( V 2 2 - V 2 )  
H l l = H l + D H l + D H l l  
H22=HZ+DH2+DH22 
R ET URN 
END 
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APPENDIX B 

DIGITAL MODEL OF HYDRAULIC LINE WITH OSCILLATING INPUT ORIFICE 

A schematic drawing of the system chosen for this example is shown in figure 11 

The system consists of a variable-area orifice at A that perturbs the system and a 
(P. 20). 

fixed orifice at B. The conduit is bounded by pressure reservoirs.  (The reservoir 
pressures  can vary. ) 

To keep the solution general, N - 2 friction orifices are inserted, which result in 
N discontinuities. A t ime interval is so  chosen that each discontinuity is one time in- 
terval from adjacent discontinuities. Thus 

This time increment is a multiple of the working time increment At,  which is 
chosen small  enough so that all disturbing functions can be accurately described by step 
functions. 

and left of each discontinuity must be inserted into the computer as data or the computa- 
tion of these quantities from the initial steady condition must be integrated into the com- 
puter program. 

The disturbing function can either be read into the computer as a function of time or 
it can be computed. For this case a sinusoidal orifice coefficient for the inlet (at A) is 
taken to be 

Initial values for velocity through each discontinuity and the pressure to the right 

B = BO + BA SIN( 2s F JAt)  

The orifice coefficient for the outlet is considered to be constant and is denoted 

The following data are needed as input to  the computer: 
C 
L length of line, f t  
BO 
BO1 steady-state inlet orifice coefficient 
BA 
F frequency of pressure perturbation 

by BN. 

wave velocity in conduit, ft/sec 

mean orifice coefficient when subjected to sinusoidal perturbations 

amplitude of inlet orifice coefficient perturbation 
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BN 
vo 
HEN 
HEX 
g 
N 
NN 
K 
M 
N2 

outlet orifice coefficient 
steady line velocity, ft/sec 
pressure head of inlet reservoir,  f t  
pressure head of outlet reservoir,  f t  

2 acceleration due to  gravity, ft/sec 
number of discontinuities 
number of working time increments for wave to travel length of conduit 
number of working time increments between discontinuities 
total number of t ime increments for which computations will be made 
number of friction orifices for which pressure and velocity data will be 

print e d 
In setting up the computer program the notation j = x, y, z is used. The notation 

means that computations are carr ied out for j starting at j = x. The computations a r e  
repeated for values of j that are increased by y until j > z. 

The following output parameters a r e  printed out by the computer: 
V(l,J), m1,4 
V(N, 4, HL" 4 
V(N2, 4, HR(N2,4, HL", 4 
For a specific example, the fluid system constants appearing in the computer pro- 

gram were chosen nominally to match experimental conditions in the Lewis line- 
dynamics facility shown schematically in  figure l l(b) (p. 20). Two se ts  of line condi- 

TABLE II. - CONSTANTS FOR EXAMPLE 

c, ft/sec 
L, f t  
BO1 = BO 
BA 
BN 

vO, ft/sec 
HEN, f t  
HEX 
g, ft/sec 
N 

K 
M 
NN 
F, CPS 

N2 
ERROR 

2 

C a s e  I 

3800 
68 

0.8 
0.48,O. 32,O. 20,O. 15 

1.0 

14 
5 20 

0 
32. 2 

17 

1 
170 

16 
40 

5 
0.00001 

C a s e  II 

3920 
68 

0.65 
).08,0.22,0.36,0.50 

0.42 

6. 5 
360 

0 
32. 2 

17 

2 
400 

32 
70 
5 

0.00001 

tions were used. The first (case I) 
was chosen in conjunction with an 
analytical study of the effect of the 
size of the input amplitude on the 
linearity of the perturbation imposed 
on the mean flow and pressure in the 
line. The second (case 11) was chosen 
to match conditions frequently obtained 
in the line. 

The constants listed in table IT 
were employed. 
puter program is the following: 

The Fortran IV com- 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

FORTRAN ACTUAL MEANING 
H L ( L 9 J - 1 )  J=Z,M+l H L ( L , J - 1 )  J = l , M  
HR( L,J-1) HR (L,J-1) 
DHR(L-1 ,J -1)  DHR(L-1,J-K) 
D H L ( L + l , J - l )  D H L ( L + l , J - K )  
V ( L J-1) V ( L  ,J-1) 
HL ( L  ,J 1 V ( L , J )  
H L ( L , J )  HL ( L  ,J 1 
HR ( L  9 J 1 HR (LI  J )  
V ( L , J )  V ( L 9 J )  
DHR ( L  9 J K )  DHR ( L t  J) 
DHL (L ,  J K )  DHL ( L ,J 

C READ PROGRAM CONSTANTS 

1 R E A D ( 5 , 1 O O ) C , X L ~ B O ~ S A ~ F r S N ~ V O ~ I i E N r H E X ~ B D 1 ~ E R R O R  
READ( 5 9 101  ) N ,NN ,K ,M,N2 

103 FORMAT(8F10 .5 )  
101 F O R P A T ( l O I 5 )  

C WRITE PRCGRAM CONSTANTS 

C COMPUTE I N I T I A L  CONDITIONS 
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WRITE INITIAL CONDITIONS 

WRITE (6,102) 

WRITE (6r103)(L,HL(L,l),L=2,” 

WRIT: (6,104) 

WRITE (6,103)(L,HR(L,l),L=l,N3) 
WRITE (6,105)BF 

102 FORMAT( lH0 ,5X ,SHHL(L ,0 )= )  

103 FORMAT(4(16rF16.495X)) 

1C4 F O R M A T ( l H 0 , 5 X , S H H R ( L , 0 ) = )  

105 FORMAT(iH0,5x,3HBF=,E14.6) 
MN=M 
MN1 =MN+l 
CON=2.0*3.141593*F*DT 
x1=v ( 1,l) 
XZ=HR(lrl) 
X4=HL(N2,1) 
X5=HR(N2,1) 
X6=V(N 91) 
X-I=HL(N,l) 
X€l=BOtBA*SIN(CON) 

C START TIME LOOP 

2 0  DO 7 J=2,MN1 
AJ = J+L2 

C COMPUTE CONDITIONS AT LEFT END 

B2(J) = BO+BA*SIN(CON*AJ) 
B=B2(J) 
JK .= J+K-1 
CALL T O R ( H R ( l ~ J - l ) r D H L ( 2 , J - l ) r V ( 1 ~ J - 1 ) ~ ~ i E N ~ I i R ( 1 ~ J ) ~ D H R ( 1 ~ J K ) ,  

lV(1,J) 1 

C COMPUTE CONDITIONS AT FRICTION ORIFICES 

C COMPUTE CONDITIONS AT RIGHT END 

B=BN 
CALL TOR(HL(N,J-l),DHR(N-lyJ-l)~ V22 ,HEX,YL(N,J),DHL(N,JK)r 

V( N 9 J 1 =-V (N, J 1 
IF (J-KKK) 7 9 3 9 3  

1 V(N,J)) 

7 CONTINUE 
GO T O  10 

C STORE RESULTS FOR PRINTING 

37 



111 I I 111111. 

Y8(LL) = BZ(J) 
5 0  Y7(LL)= HL(N,J) 

LZ=L2+KKK -1 
2 0 0  FORMAT(7E16.8) 

C INITIALIZE 

C STORE RESULTS FOR PRINTING 

c K!? I TF OUTPUT 
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APPENDIX C 

DIGITAL MODEL FOR TAPERED HYDRAULIC LINE 

The system chosen for the tapered hydraulic line is shown in figure 17 (p. 26). This 
system consists of a variable-area orifice at A and a fixed orifice at B connected by a 
tapered line with a linear diameter variation between A and B. The line is bounded by 
pressure reservoirs. The tapered line was approximated by a line composed of a dis- 
crete  number of constant-diameter sections of decreasing (or increasing) diameter. 

result in N discontinuities and N - 1 sections of straight conduit. 

are multiples of the working time interval, and the diameter of the approximating 
straight section of conduit is equal to the average diameter of the section that it is 
approximating. 

It is assumed that the wave velocity remains constant over the entire conduit, which 
is equivalent to assuming that the ratio of the conduit diameter to  wall thickness remains 
constant (a reasonable assumption from a structural viewpoint). The conduit is thus 
approximated by N - 1 sections of equal length. The diameter of the approximating 
straight section is given by 

To keep the solution general, N - 2 diameter discontinuities are inserted, which 

The conduit is s o  divided that the wave travel t imes between adjacent discontinuities 

Initial values for velocity and pressure to  the right and left of each discontinuity 
must be inserted into the computer, o r  the equations for the computation of these quan- 
tities from initial steady conditions must be integrated into the computer program. 

or  it can be computed. For this model a sinusoidal orifice coefficient for the inlet (at A) 
is taken to  be 

The disturbing function can either be read into the computer as a function of time 

B = BO + BA SIN( 2sFJAt) 

The orifice coefficient for the outlet is constant and denoted by BN. 
The following data are needed as input to the computer: 
DA diameter at A, f t  
DB diameter at B, f t  
CA wave velocity in conduit, ft/sec 
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L 
BO1 
BO 
BA 
F 
BN 
HEN 
&o 
g 
N 
NN 
K 
M 
N2 

length of line, f t  
steady- state input or ifice coefficient 
mean orifice coefficient when subjected to sinusoidal perturbations 
amplitude of orifice coefficient perturbation 
frequency Qf pressure perturbation 
output orifice coefficient 
pressure of input reservoir, f t  
steady-state flow rate, f t  
acceleration due to gravity, ft/sec 
number of discontinuities 
number of working time increments for wave to travel length of conduit 
number of working time increments between discontinuities 
total number of time increments for which computations will be made 
number of diameter discontinuity for which pressure and velocity data will 

be printed 
The following output parameters a r e  printed out by the computer: 

VR(l,J),  m ( 1 ,  J) 
W N ,  4, HUN, J) 

VL“, “2,J) 
“2, J) 

For a specific example the effect of line taper on the response of a particular sys- 
tem of the type shown in figure 17 (p. 26) was computed. Calculations were made for 
nine different degrees of line taper. The specific data used in this analysis were as 
follows: 

TABLE III. - END DIAMETERS AND 

CONDITIONS FOR TAPER STUDIES 

1 . 1  
1 . 2  

DB 

1 
1 . 1  
1. 2 
1 . 3  
1 . 4  

1. 5 
. 9  
. 8  
. 7  

__ 

BO 

1 
1.235 
1.562 
2.041 
2. 78 

4.0 
.825 
.695 
.593 

BA 

0 . 1  
.1235 
.1562 
.2041 
.278  

. 4  

.0825 

.0695 

.0593 

BN 

0.2 
. 165 
.139  
. 1185 
. l o 2  

.089  

. 2 4 7  

.313  

.408  

CA = 3000 ft/sec 
L = 5 0 f t  
HEN = 660 f t  
QO = 6 . 4  cu ft/sec 
N =  11 
“= 10 
M = 300 

for the various tapers studied. 

5, 7.5 ,  10, 12.5, 15, 17.5,  20, 22.5, and 25 cps. 

follows: 

Table III gives the end diameters and conditions 

These cases were studied for frequencies of 

The Fortran IV program for this example is as 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

ACTUAL MEANING 
H R ( L , J - 1 )  J = l , M  

DHL ( L 9 J - K )  
V ( L J - 1 1  
! i R  ( L  t J )  
DHR ( L  J )  

V ( L , J )  
H L  ( L  9 J-1) 
H L  ( L  ,J) 
DHL (L,J) 

C READ DATA 

6 0 0  READ ( 5 , 1 0 O ) D A , D B , B O l , B O , B A I B " , X L , C  ,F,LOSS,ERROR,QO 
100 F O R M A T ( 8 F 1 0 . 5 )  

READ ( 5 , 1 0 l ) K , M , N , N 2  ,NN 

C WRITE I N P U T  DATA 

W R I T E ( 6 , 1 1 3 )  
113 FORMAT(1H1,2X,3HDA=,8X,3HDB=,9X,OHB01=,8X,3HBO=,9X, .3HBA=,9X~3HBN=, 

~ ~ X I ~ H H E N = , ~ X , ~ H X L = , ~ X , ~ H C =  ,9X,2HF=,9X,3HQO=)  
W R I T E ( 6 , 1 1 2 ) D A , D B , B O l , B D , B A , a " I i E N ~ X L , C  ,F,QO 

1 1 2  F O R M A T ( l l F 1 1 . 4 )  
101 F D R M A T ( 8 1 5 )  

W R I T E ( 6 9 1 1 6 )  

W R I T E (  6 , 1 1 5  1 
116 FORMAT(1H0,5X,2HK=,6X,2HM=,8X,2HN=,8X,3HN2=,7X,3HNN= ) 

K ,M,N,N2 ,NN 
1 1 5  F O R M A T ( 5 1 1 0 )  

MN=M 
L 2 = 0  
N 1  = N - 1  
XNN=NN 
D T = X L / C  /XNN 

XN = N 
KKK = 101 

CON=2. *P I *F  

C COMPUTE I N I T I A L  C O N D I T I O N S  AND L I N E  CONSTANTS 

4 1  



I F  ( R - l o )  8 9 8 9 3  
8 AA = ( R * R - R l / G  

GO TO 4 
3 AA = ( 3 . * R * R - Z . ~ R - l 0 ) / ( 4 . * G )  
4 H L ( L 9 1 )  = H R ( L - 1 9 1 1  
6 H R ( L 9 1 )  = H L ( I , l ) - A A * V L ( L 9 1 ) * * 2  

V R ( N 9 1 )  = Q O / A R ( N - l )  
H L ( N 9 1 )  = H R ( N - 1 9 1 )  
HEX = HL ( N 9 1  ) - ( V R  I N  9 1) /BN 1 * < $ Z  
MN = M + 1  
DO 7 L = 1 9 N  
DO 7 J = 1 9 K  
D H L ( L 9 J )  = 0 0  

7 D H R ( L , J )  = o O  
W R I T E  ( 6 9 1 0 7 )  HEX 

107 FORFAT(2HOV,16X,2HHL,16X,2HHR, jX ,4HHEX=9FlZ .4)  
1 0 8  F O R M A T ( 3 E 1 6 . 8 9 1 5 )  

X l = V L  ( 1 9 1 1 
X 2 = V R ( N  9 1 )  

C W R I T E  I N I T I A L  C O N D I T I O N S  

C S E T  UP T I M E  LOOP 

3 0  DO 9 J = 2 9 M N  
J K = J + K - l  
A J = J + L Z - l  

C D E F I N E  C O N D I T I O N S  FOR L E F T  END 

B= B O + B A * S I N ( C O N * D T * A J )  
L = 1  

C T E R M I N A L  O R F I C E  S U B R O U T I N E  

C A L L  T O R ( H R ( L , J - l ) , D H L ( L + l , J - l ) , V L ( L , J - 1 ) , H E N , H R ( L , J ) 9 D H R ( L 9 J K ) ,  
l V L ( L 9 J )  1 

DO 1 0  L = Z * N l  

C CHECK C O N D I T I O N S  FOR D I A M E T E R  D I S C O N T I N U I T Y  

CCC z H R ( L v J - 1 )  + 2 . * D H L I L - 1 9 J - l ) + C L ( L ) * V l . ~ L 9 J - l ~ / G - H L ( L ~ J ~ l ~ ~ Z ~ *  
l D H R ( L + l r J - l ) + C R ( L I * V R ( L , J - 1 ) / G  

I F ( C C C )  1 9 1 9 2  
V 2 = - V L  ( L  9 J-? 1 
V l = - V R ( L , J - l )  

1 
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C D E F I N E  C O N D I T I O N S  FOR R I G H T  END 

C 

L = N  
B = B N  
V 2 = - V R ( L , J - 1 )  

T E R M I N A L  O R F I C E  SUBROUTINE 

C A L L  TOR(HL(L,J-l),DHR(L-l,J-l), V 2  

V R ( L , J ) = - V R ( L * J )  
I F ( J - K K K )  9 , 2 6 9 2 6  

1 V R ( L , J ) )  

9 C O N T I N U E  

C END T I M E  LOOP 

C STORE RESULT FOR P R I N T I N G  

2 6  DO 2 7  J = l , K K K  
L L = J + L 2  
Y l ( L L ) = V L ( l , J  1 
Y Z ( L L ) = V R ( N  ,J i 
Y 3 ( L L I = H R ( l , J  1 
Y 4 ( L L ) = H L ( N  ,J 1 
Y 5 ( L L l = H L ( N 2 , J  1 

2 7  Y 6 ( L L ) = H R ( N 2 , J  1 
L 2 = L 2 + K K K - l  

C I N I T I A L I Z E  

DO 40 L = l , N  
V L ( L , l ) = V L ( L , K K K )  
V R ( L * l ) = V R ( L r K K K )  
DO 40 J = l , K  
K K = K K K + J - l  
D H L ( L , J ) = D H L ( L , K K )  

4 0  D H R ( L , J ) = D H R ( L , K K )  
DO 2 8  L = l , N  
H R ( L , l ) = H R ( L , K K K )  

2 8  H L ( L , l ) = H L ( L , K K K )  
MNZMN-KKK+1 
I F ( M N )  2 9 , 2 9 9 3 0  

2 9  NK=M+1 

C WRITE OUTPUT 

WRITE ( 6 , 1 0 9 )  
1 0 9  FORMAT(3HOV1,16X,3HHRl,l4X~4HVN ,12X,5HHLN , l - X , 4 H H L N 2 , 1  

1 2  1 
WRITE(6,110)(Yl(J),Y3(J),Y2(J),Y4(J),Y5(J),Y6(J),J=l,NK) 
DO 3 1  J = l , N K  
Y l ( J ) = Y l ( J ) - X l  
Y 2 (  J ) = Y 2 ( J ) - X 2  
Y 3 ( J ) = Y 3 ( J ) - X 3  
Y 4 ( J ) = Y 4 ( J ) - X 4  

X ,4HHRN 
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Y 5 ( J ) = Y 5 ( J ) - X 5  
3 1  Y 6 ( J ) = Y 6 ( J ) - X 6  

W R I T E  (6,109) 
W R I T E ( 6 , 1 1 0 ) ( Y l ( J ) , Y 3 ( J ) , Y 2 ! J ) , Y 4 ( J ) , Y 5 ( J ) , Y 6 ( J ) , J = l , N K )  

110 F O R M A T ( b G 1 6 . 8 )  
G O  TO 6 0 0  
END 
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APPENDIX D 

SYMBOLS 

line area, sq  f t  

line area of i, sq f t  

line area of j, sq f t  

orifice area, sq f t  

line area to left of diameter dis- 
continuity, sq f t  

line area to right of diameter 
discontinuity, sq  f t  

polynomial coefficients 
orifice coefficient, (ft/sec 2) 1/2 

friction orifice coefficient, 
(ft/sec2) 'j2 

action, (ft/sec 2 ) 1/2 

action, (ft/sec2)1/2 

orifice coefficient before wave 

orifice coefficient after wave 

sonic velocity in  line, ft/sec 

orifice discharge coefficient 

wave velocity in line i, ft/sec 

wave velocity in line j, ft/sec 

wave velocity to left of discon- 
tinuity, ft/sec 

wave velocity to right of discon- 
tinuity, ft/sec 

line diameter, f t  

mean diameter of tapered line, 
f t  

Ef 

f 
f 

g 

H 

HEN 

HEX 

H1 

H1 1 

H22 

AH 

AHl 

AH2 

elastic modulus of conveyer, 
lbjsq f t  

elastic modulus of fluid, lb/sq f t  

Darcy friction factor 

function 

acceleration due to gravity, 
ft/sec2 

pressure head, f t  

pressure head of inlet reservoir, 
f t  

pressure head of outlet reser-  
voir, f t  

pressure head to left of discon- 
tinuity before wave action, ft 

pressure head to right of discon- 
tinuity before wave action, f t  

pressure head to left of discon- 
tinuity after wave action, f t  

pressure head to right of discon- 
tinuity after wave action, f t  

pressure head change across 
wave or orifice, f t  

wave impinging from left of dis- 
continuity before wave action, 
f t  

wave impinging from right of 
discontinuity before wave 
action, f t  
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AH1 1 

AH22 

AhL 

J 

K 

L 

P 

A P  

Q 
R 

T(i) 

t 

At 

t- 

t+ 

wave leaving discontinuity on 
left side after wave action, f t  

wave leaving discontinuity on 
right side after wave action, 
f t  

pressure head loss over small  
line length, f t  

time subscript 

number of working time incre- 
ments between discontinuities 

line length, f t  

pressure in line, lb/sq f t  

pressure wave, lb/sq f t  

volume flow rate,  cu ft/sec 

area ratio at diameter discon- 
tinuity 

reflection coefficient in line i 

transmission coefficient in line i 

time, sec  

incremental time interval, sec  

short time before wave action, 
sec 

short time after wave action, sec 

V 

VE1 

VE2 

vo 

v1 

v2 

vll 

v22 

X 

6 

P 

7 

velocity in  line, ft/sec 

average velocity of moving end 
before wave action, ft/sec 

average velocity of moving end 
after wave action, ft/sec 

velocity in line adjacent to mov- 
ing orifice, relative to  orifice, 
ft/sec 

velocity in line to left of discon- 
tinuity before wave action, 
ft/sec 

velocity in line to right of discon- 
tinuity before wave action, 
ft/sec 

velocity in line to left of discon- 
tinuity after wave action, 
ft/sec 

velocity in line to right of discon- 
tinuity after wave action, 
ft/sec 

position, f t  

line taper factor (eqs. (31)), f t  

3 mass density of fluid, slugs/ft 

wall thickness of conduit, f t  
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nection with a NASA contract or grant and released under NASA auspices. 
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language considered to merit NASA distribution in English. 

TECHNICAL REPRINTS: Information derived from NASA activities 
and initially published in the form of journal articles. 

SPECIAL PUBLICATIONS Information derived from or of value to 
NASA activities but not necessarily reporting the results .of individual 
NASA-programmed scientific efforts. Publications include conference 
proceedings, monographs, data compilations, handbooks, sourcebooks, 
and special bibliographies. 

Scientific and technical information considered 

Information less broad in scope but nevertheless 
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